If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4p^2+10p-36=0
a = 4; b = 10; c = -36;
Δ = b2-4ac
Δ = 102-4·4·(-36)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-26}{2*4}=\frac{-36}{8} =-4+1/2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+26}{2*4}=\frac{16}{8} =2 $
| x+2x+4x²=528 | | 2/5h=8/15 | | 4b^2-8b-35=9 | | Y=45x+300 | | 6x+13=59 | | 4p^2+10-36=0 | | 50=5x^2 | | 4x-3=6x+6 | | -5(1+5n)=-5+7n | | 50=5x² | | 4x²=9x-2 | | -32+2b=-42+2b | | m÷3.5=4.2 | | |2x+1|=9 | | -3a+3=-15 | | 80/x=65/100 | | -3.8x-(-1-9.7x)=2.6+13.3x | | 3/10p=22/5 | | -5n=-115 | | 43-17=z | | 7n+5+9n=8-2n-3 | | n+2=-114-n | | 54-19=z | | 5/y+3/y=2 | | b×b-2b-3=0 | | 4(4)+16(9)=20x | | 8(6x+8)=-1/4(x-79)+4x | | 4x(4)+16(9)=20 | | -8(x-8)=120 | | -2=-3x+2+7× | | 9=m+14 | | 5p-3=2 |